We can’t reach our Climate Positive goal without going circular.”
—Pernilla Halldin, Public Affairs, Sustainability H&M Group

“We can not be satisfied until tens of thousands of companies are serving hundreds of million of customers really doing circular. As long as it remains in the lab we struggling.
—Mike Barry, Director of Sustainability (Plan A) Marks & Spencer, Closing the Loop, 2018.

“The concept of circularity comes from our need to reduce our carbon footprint. It’s not about having cost-neutral recycled materials. It’s about saving ourselves!”
—Accelerating Circularity

“Cultivate a sense of collective vigilance for every act of consumption, evaluating its energy footprint. Learn about the production methods of everyday things, how to recycle them, and their planetary impact.”
—Dalai Lama, A Call for Revolution: A Vision for the Future, 2018
Modeling & Linking Report

This report is designed to model textile-to-textile circular supply systems and highlight links required to make the system work.

The models will be used to formulate our upcoming textile-to-textile circular trials. Next steps are briefly discussed at the end of this report.

The textile industry has made ambitious commitments for carbon reduction. Textile-to-textile circular systems will be one solution among several that are required to meet those commitments. The carbon reduction potential of these systems must be validated. The trials imagined in this Modeling and Linking Report are critical to developing this knowledge.

Both before and after the trials, Accelerating Circularity will facilitate the formation of the required links.

All tools, intelligence, and know-how developed by or in collaboration with Accelerating Circularity will be made public in order to support the transition of the entire industry towards making circularity a reality.

Parameters:

- **Circular Strategy:** textile-to-textile recycling (resale and reuse are outside our scope)
- **Feedstock bookkeeping:** material flows will be traced using the mass balance approach to enable scaled uptake of spent textile feedstocks
- **Geographies:**
 - **Feedstock (Spent Textiles) Sourcing:** East Coast USA
 - **Processing and Manufacturing (Recyclers, Yarn Mfg, Fabric Mills, and CMT):** North America
- **Products:** Apparel & Home Textiles
- **Fibers:** Cotton, Polyester, Manmade Cellulosic Fiber (MMCF)
- **Minimum Recycled Content:** 40% Post-consumer or Post-industrial spent textile inputs.
- **Goal:** Net zero carbon emissions, to meet the targets in the 2015 Paris Agreement on Climate Change (to limit global temperature rise to well below two degrees Celsius above pre-industrial levels as outlined in the UNFCCC FICCA: https://unfccc.int/climate-action/sectoral-engagement/global-climate-action-in-fashion/about-the-fashion-industry-charter-for-climate-action).
- **Approach:** Divert textiles from landfill and transform diverted material into circular textile feedstock.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>5</td>
</tr>
<tr>
<td>II. Table of Contents</td>
<td>6</td>
</tr>
<tr>
<td>III. Organizational Structure</td>
<td>9</td>
</tr>
<tr>
<td>IV. System Boundaries</td>
<td>10</td>
</tr>
<tr>
<td>V. Textile Use Case Hierarchy</td>
<td>12</td>
</tr>
<tr>
<td>VI. Sorting Matrices</td>
<td>14</td>
</tr>
<tr>
<td>VII. Links</td>
<td>16</td>
</tr>
<tr>
<td>VIII. System Ecology</td>
<td>24</td>
</tr>
<tr>
<td>IX. Circular Supply Chain Flows</td>
<td>26</td>
</tr>
<tr>
<td>X. ACP Product Models</td>
<td>32</td>
</tr>
<tr>
<td>XI. Next Steps</td>
<td>40</td>
</tr>
<tr>
<td>XII. Acknowledgments</td>
<td>46</td>
</tr>
</tbody>
</table>
Organizational Structure

CORPORATE GOVERNANCE • ORGANIZATIONAL STRUCTURE •

FISCAL & LEGAL COMPLIANCE • MISSION & VISION ADHERENCE

STRAIGHT PLANNING •
TRIAL GUIDANCE & PARTICIPATION •

POTENTIAL BOARD CANDIDATES

ACP STAFF •
PROJECT IMPLEMENTATION AND ADMINISTRATION

SYSTEM PARTNERS •
COLLABORATE WITH ACP & GROUPS

SHARED EXPERTISE IN SYSTEM SEGMENT

TRIAL PARTICIPATION

BOARD OF DIRECTORS

STEERING COMMITTEE

BOARDS OF DIRECTORS

SORTING SPECIFICATION WORKING GROUP •
POST-CONSUMER HIERARCHY

MECHANICAL & CHEMICAL SORTING MATRIX

SORTING CATEGORIES & AGGREGATION

RECYCLER CATEGORIZATION

SYSTEM PARTNER TRANSITION

BRAND & RETAILER WORKING GROUP •
TAKE-BACK PROGRAMS

PROOF OF CONCEPT - FINISHED

PRODUCT RECOMMENDATIONS

SYSTEM PARTNER TRANSITION

TRIMS

OTHER TECHNICAL ISSUES

AD HOC WORKING GROUPS

TRIMS

OTHER TECHNICAL ISSUES
The development of circular textile-to-textile supply systems must recognize the interconnectedness of our planet's systems. At Accelerating Circularity, we have been influenced by the work of Kate Raworth and her theory of Doughnut Economics. Her focus on an awareness of the ecological ceiling, social foundation, and regenerative and distributive economy are required for all businesses, but are closely aligned to the needs of a healthy textile industry.

Each bounded area of activity has inherent limits that, in combination, make a system that either supports or depletes our social, environmental, or economic welfare.

KEY CONSIDERATIONS

- **Ecological:** Carbon, chemical, water and energy use must not exceed the nine planetary boundaries.
- **Technical:** Circular systems must meet minimum quality and volume requirements.
- **Logistics:** Material and processing locations must adapt to become circular.
- **Business Case:** Circularity is about improving our social and environmental profile, so our economic models must account for these factors. Without positive social and environmental impact, there is no reason to change from business as usual.
In collaboration with a wide variety of actors in the textile-to-textile circular system, Accelerating Circularity is developing a Textile Use Case Hierarchy for spent textiles that is accountable to social, environmental, and economic interests.

Goals

- Define circulation pathways for spent textiles.
- Identify best or highest-value use for collected materials (e.g. reuse, resale, recycler, wiper or shoddy) to establish a viable circular systems marketplace.

 In this framework:
 - Collectors establish the availability of volumes and types of materials
 - Sorters know what is available and how it needs to be sorted
 - Aggregators know likely bale specifications
 - Preprocessors know what services are required (e.g. trim removal, right sizing)
 - Recyclers know what volumes and types of materials available
 - Brands and retailers are fluent in design for recycling
 - Incorporate all textile-related industries (e.g., apparel, home textiles, and hospitality, uniforms, and industrial laundry).

Next Steps

- Create knowledge and tools that support scaling and replication.
- Support infrastructure and knowledge development to prevent loss of material intelligence.
 - Educate consumers to avoid the municipal solid waste stream, which is a textile dead-end.
- Establish metrics and collect data to evaluate the availability and direction of flows for spent textiles from all current sources (e.g., landfill, secondhand market, consumers, brands and retailers, manufacturing).
- Develop sorting hierarchies for materials identified as textile-to-textile recycling feedstocks.
Textile Use Case Hierarchy

<table>
<thead>
<tr>
<th>Material Segment</th>
<th>EPA 2017 14% Diverted</th>
<th>EPA 2017 Millions of Tons</th>
<th>2019 Exports Million of Tons</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Reuse/Resale</td>
<td>7%</td>
<td>0.90</td>
<td>0</td>
<td>Must measure growth, resale brands, platforms, 2nd hand market</td>
</tr>
<tr>
<td>Repair</td>
<td></td>
<td></td>
<td></td>
<td>New sorting requirements</td>
</tr>
<tr>
<td>Inl’ Reuse/Resale* (6302)</td>
<td></td>
<td>0.84</td>
<td></td>
<td>Issues with bans and trans shipments</td>
</tr>
<tr>
<td>Recycle - Mechanical</td>
<td>2.5 w/Shoddy</td>
<td>0.3 w/Shoddy</td>
<td></td>
<td>Growth for commercial entities in post-industrial & move into post-consumer feedstocks</td>
</tr>
<tr>
<td>Recycle - Chemical</td>
<td></td>
<td></td>
<td></td>
<td>Commercialization and scaling required</td>
</tr>
<tr>
<td>Wipers Domestic</td>
<td>3.5</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wipers (6310.9000/6310.10.00)** International</td>
<td></td>
<td>0.09</td>
<td></td>
<td>Mechanization support to maintain material domestically</td>
</tr>
<tr>
<td>Shoddy</td>
<td>2.5 with Recycling</td>
<td>0.3 with Recycling</td>
<td></td>
<td>Clarify target materials</td>
</tr>
<tr>
<td>Landfill</td>
<td>68%</td>
<td>9</td>
<td></td>
<td>Primary target for reduction – diversion tool</td>
</tr>
<tr>
<td>Incineration</td>
<td>19%</td>
<td>2.5</td>
<td></td>
<td>Secondary target for reduction – diversion tool</td>
</tr>
</tbody>
</table>

Total

- Domestic Reuse/Resale: 0
- Repair: 0
- Inl’ Reuse/Resale* (6302): 0.84
- Recycle - Mechanical: 2.5 w/Shoddy
- Recycle - Chemical: 0.3 w/Shoddy
- Wipers Domestic: 3.5
- Wipers (6310.9000/6310.10.00)** International: 0.09
- Shoddy: 2.5 with Recycling
- Landfill: 68%
- Incineration: 19%

Total: 13.1 million tons

Mechanical Recycling Matrix

<table>
<thead>
<tr>
<th>Feedstock Fibers</th>
<th>Textile to Textile</th>
<th>Wipes, Shoddy & Insulation</th>
<th>Elastane</th>
<th>Trim</th>
<th>Pigment/Prints</th>
<th>Coatings/Films</th>
<th>Chemistry/ Dyne</th>
<th>Fabric Construction</th>
<th>Color</th>
<th>White</th>
<th>Full Garments v Parts</th>
<th>Fabrics Scraps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plastic</td>
<td>Metal</td>
<td>Textile</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>100% Cotton</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>90% Cotton/10% Elastane</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>90% Cotton/10% Other</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>60% Cotton/40% Polyester</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>60% Cotton/40% Other</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>100% Polyester</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>90% Polyester/10% Elastane</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>90% Polyester/10% Other</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>60% Polyester/40% Other</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>100% Viscose</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>60% Viscose/40% Other</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Our Focus Areas of Influence Out of Our Scope

Chemical Recycling Matrix

<table>
<thead>
<tr>
<th>Feedstock Fibers</th>
<th>Can Include</th>
<th>Must Consider</th>
<th>Pliable</th>
<th>Textile</th>
<th>Trim</th>
<th>Pigment/Prints</th>
<th>Coatings/Films</th>
<th>Chemistry/ Dyne</th>
<th>Fabric Construction</th>
<th>Color</th>
<th>White</th>
<th>Full Garments v Parts</th>
<th>Fabrics Scraps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plastic</td>
<td>Metal</td>
<td>Textile</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>100% Cotton</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>90% Cotton/10% Elastane</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>90% Cotton/10% Other</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>60% Cotton/40% Polyester</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>60% Cotton/40% Other</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>100% Polyester</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>90% Polyester/10% Elastane</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>90% Polyester/10% Other</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>60% Polyester/40% Other</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Note: Textile Use Case Hierarchy and Recycling Matrix provide a comprehensive overview of material segments, recycling processes, and potential areas for focus and improvement. The tables outline the diversion rates, exports, and notes on various aspects such as domestic reuse/resale, repair, and recycling processes like mechanical and chemical recycling.
Resale and repair come to mind when we talk about circular business models. These strategies are opportunities to engage and deepen customer relationships.

Transparency and traceability systems will be critical for brands to develop consumer connections, validate new material systems and make circularity claims.

Collector relationships will be essential to the new business models. They may be the first point of contact for take-back and resale programs.

Recyclers will be knowledge providers when it comes to circular design requirements.
The consumer goes from being a spectator to an active participant in the new system. Consumers become the new raw material suppliers. They send products back to brands and retailers or directly to collectors. Consumers have an opportunity to facilitate entry into the circular system through better sorting.

Purchasing is possible through multiple channels, from the traditional in-store or online marketplace to newer options of recommerce, repaired, and the growing thrift market.

Engaged consumers can dive further into the supply chain through participation in digital traceability schemes.
In a circular supply system, traditional relationships will be joined by newly formed and recently established links. Some new links represent a shift in an existing relationship. For example, collectors and brands will seek active, rather than passive, relationships with traditional actors in the collection and resale sectors. Other links are about new services and technologies that augment existing business and infrastructure, such as specialized sorting, preprocessing, and robust aggregation facilities to produce high value feedstocks for textile-to-textile recyclers.
Links to and from recyclers are generally new.

Chemical recyclers are just getting into the game. This requires identifying the required sorting fractions and volumes to aggregate.

Mechanical recyclers, while commercial in post-industrial materials, are working to incorporate post-consumer feedstocks.

Recyclers can establish relationships to help brands and retailers understand how to design products that can be recycled through commercial technologies.
The Textile-to-Textile Circular System Ecology encompasses a wide variety of interconnected actors. Direct relationships between multiple actors are required for the system to work.

- Current systems have limited players within certain categories (e.g., sorters and aggregators).
- Materials are touched multiple times, creating inefficiencies (e.g., aggregators).
- Chemical recyclers are in the development phase and need to be commercialized.
Circular systems — like today’s linear supply chain — include a multitude of pathways. Each is unique and can be simple or complex, driven by the quantity and quality of available material, technical capabilities, and demand. We need to transition from the current system to circularity quickly.

The current system must quickly reduce carbon emissions if we are to meet the goals of the Paris Agreement.

We believe in using the mass balance approach to material accounting to support this rapid transition. This approach allows collectors to aggregate spent textiles from a number of sources in order to supply dependable flows of quality feedstocks to the required specifications at commercial scale.

The hypothetical models outlined in the following pages are based on our research and conversation with industry actors.
Textile-to-Textile Towel Story

50% rCotton / 50% rPET

Hotels rotate towels on a regular basis, creating feedstocks for the recycling process. The only preprocessing required to transform towels to recycling feedstocks is laundering, which is done on site. The towels need to be aggregated to create commercial quantities of feedstocks. In this model, spent towels from The Breakers in Palm Beach can be shipped to Mexico to be garnetted, blended with rPET, and spun into yarn. The yarn is then shipped to Georgia and woven into new towels, which can then be procured by The Breakers or other hotels.

Circular Towel Flow

1. Collectors: The Breakers, Palm Beach, FL - collection on site
2. Sorters: The Breakers, Palm Beach, FL - Sorting on site
3. Pre-processors: The Breakers, Palm Beach, FL - Laundry on site
4. Aggregators: Southeast
5. Recycler: Giotex Merida, Mexico
6. Fiber Manufacturer: Giotex, Merida, Mexico
7. Yarn Spinner: Giotex, Merida, Mexico
8. Fabric Mill: 1888 Mills, Griffin, GA
10. Brands: The Breakers, Palm Beach, FL
Textile-to-Textile T-Shirt Story

50% rCotton/50% rPET

T-shirts, a wardrobe staple, are made with a wide variety of materials. A textile-to-textile t-shirt made on the East Coast of the U.S. could be:

1. A commercial blend of (1) post-consumer **mechanically** recycled cotton, (2) post-consumer **mechanically** recycled polyester textiles, and (3) post-consumer **mechanically** recycled polyester bottles

2. A blend of (1) post-consumer **mechanically** recycled cotton and (2) post-consumer **chemically** recycled polyester textiles (technology commercial in about years).

Circular T-shirt Flow

1. Collector: Cotton - Northeast
2. Collector: (Option 1) Polyester, PET bottles / (Option 2) No PET Bottles - Southeast
3. Sorters: Cotton - Northeast
4. Sorters: PET - Southeast
5. Aggregators - Southeast
6. Pre-processors - Southeast
7. Recycler/Fiber Mng.: Mechanical rCotton - Southeast
8. Recycler: (Option 1) Mechanical rPET / (Option 2) Chemical Recycler - Southeast
9. Fiber Mfg. - rPET Southeast
10. Yarn Spinner - Southeast
11. Fabric Mill - Southeast
12. Finished Goods Maker - Southeast
13. Brands - USA
Textile-to-Textile Jean Story

30% Refibra™ Lyocell/40% rCotton/30% Organic Cotton

Jeans are often developed vertically from yarn to finished garment. This model outlines the use of Refibra™, which is a combination of 30% textile-derived pulp and 70% wood pulp sourced from sustainably managed forests. Textile for the pulp is collected in the Southeast. The fiber plant is located in Alabama. rCotton is collected and processed in the South-east. Organic cotton is grown in Texas. All fiber is shipped to Mississippi, where it is spun into yarn. Fabric and garments are made in California and shipped to US brands and retailers.

Circular Denim Flow

1. Collectors - Southeast
2. Sorters - NC
3. Aggregators - NC
4. Pre-processors - NC
5. Recycler: Cellulose pulp - VA
6. Recycler/Fiber Mng.: rCotton - SC
7. Fiber Mfg.: Refibra - AL
8. Yarn Spinner - MS
9. Fabric Mill - MS
10. Finished Goods Maker - CA
11. Brands - USA
Systems Trial Project Scope

Phase I Research
Building on initial research confirming material paths & products.

Phase II Planning
Outline technical and economic models and plan trial traceability.

Phase III Engagement
Engage trial participants and supply systems.

Phase IV Execution
Trial system from collection through product.

Phase V Evaluation
Product testing and business case development.
Stakeholder Registry

Detailed information is required to transform models into real, functioning systems. To facilitate live connections, we will publish a directory of relevant stakeholders that builds on our previous mapping work.

Register now: www.acceleratingcircularity.org/stakeholder-registry
Trial Goals & KPIs

<table>
<thead>
<tr>
<th>Testing Models and Links in Trials: Goals</th>
<th>Indicator (Type: Output Outcome Impact)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate logistical and technical feasibility of circular textile systems</td>
<td>Volume of spent textiles entering recycling processes</td>
</tr>
<tr>
<td></td>
<td>Total volume of material through system</td>
</tr>
<tr>
<td></td>
<td>On-time delivery of process in- and outputs</td>
</tr>
<tr>
<td></td>
<td>Number of circular products</td>
</tr>
<tr>
<td></td>
<td>Products meet brand quality acceptance standards</td>
</tr>
<tr>
<td>Establish best practices for brand/retailer take-back implementation</td>
<td>Number of brands collecting material for feedstock</td>
</tr>
<tr>
<td></td>
<td>Fraction of total RFeedstock in trial attributable to brand take-back</td>
</tr>
<tr>
<td>Demonstrate business case for textile-to-textile circularity</td>
<td>New business generated by number of contracts</td>
</tr>
<tr>
<td></td>
<td>Industry buy-in by number of organizations participating in trials</td>
</tr>
<tr>
<td></td>
<td>Number of businesses sorting to RFeedstock fraction</td>
</tr>
<tr>
<td></td>
<td>Ratio of RFeedstock to total spent textiles collected</td>
</tr>
<tr>
<td>Demonstrate improved environmental and social performance</td>
<td>GHG intensity</td>
</tr>
<tr>
<td></td>
<td>Water intensity</td>
</tr>
<tr>
<td></td>
<td>Material diverted from landfill</td>
</tr>
<tr>
<td></td>
<td>Uptake of recycled material in finished products</td>
</tr>
<tr>
<td></td>
<td>Rate of virgin material production growth</td>
</tr>
<tr>
<td></td>
<td>New jobs</td>
</tr>
</tbody>
</table>

Indicator types:

OUTPUTS: What did we do, and how much of it?
Time-bound to the trials

OUTCOMES: What did our interventions directly achieve?
Baseline metrics & before/after comparisons for measuring uptake and scale short- to mid-term

IMPACTS: What was the environmental, social, and economic impact of our work?
Establish baselines and data collection methodologies for longer-term impact studies
ACKNOWLEDGMENTS

“Circularity is a team sport.”
—Karla Magruder, Founder and President, Accelerating Circularity, Inc.

This report would not exist without the many people who contributed their time and effort to the work of modeling circular textile supply systems. We are especially grateful to the members of our Sorting Specifications Working Group, whose knowledge and insights developed the textile use hierarchy and chemical and mechanical sorting matrices. We also wish to thank the growing membership of our Brand and Retail Collaboration Working Group, whose efforts ground us in the realities of bringing circular products to market as well as the complexities of responsibly managing those products at end-of-life. Special thanks to Shelly Gottschamer for volunteering to lead that group as well as for her overall willingness to contribute to the cause. We wish to acknowledge the members of our Steering Committee and Board of Directors, who continue to shepherd the project with strong oversight and strategic leadership. We are grateful for our funders, especially the Walmart Foundation, whose support ensures we can carry this work forward. Thank you all very much.