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BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a group of manmade chemicals containing at least one fully fluorinated car-
bon atom. The widespread use, large number, and diverse chemical structures of PFAS pose challenges to any sufficiently protective regulation, emis-
sions reduction, and remediation at contaminated sites. Regulating only a subset of PFAS has led to their replacement with other members of the
class with similar hazards, that is, regrettable substitutions. Regulations that focus solely on perfluoroalkyl acids (PFAAs) are ineffective, given that
nearly all other PFAS can generate PFAAs in the environment.
OBJECTIVES: In this commentary, we present the rationale adopted by the State of California’s Department of Toxic Substances Control (DTSC) for
regulating PFAS as a class in certain consumer products.
DISCUSSION: We at the California DTSC propose regulating certain consumer products if they contain any member of the class of PFAS because: a)
all PFAS, or their degradation, reaction, or metabolism products, display at least one common hazard trait according to the California Code of
Regulations, namely environmental persistence; and b) certain key PFAS that are the degradation, reaction or metabolism products, or impurities of
nearly all other PFAS display additional hazard traits, including toxicity; are widespread in the environment, humans, and biota; and will continue to
cause adverse impacts for as long as any PFAS continue to be used. Regulating PFAS as a class is thus logical, necessary, and forward-thinking. This
technical position may be helpful to other regulatory agencies in comprehensively addressing this large class of chemicals with common hazard traits.
https://doi.org/10.1289/EHP7431

Introduction

The PFAS Class
The term perfluoroalkyl and polyfluoroalkyl substances (PFASs)
was first introduced by Buck et al. (2011) to describe certain man-
made chemicals containing at least one fully fluorinated carbon
atom (i.e., a carbon atom surrounded by fluorine instead of hydro-
gen). Subsequently, the U.S. Environmental Protection Agency
(EPA) and others have dropped the extra “s” at the end of the class
name, which has now become the standard in the United States.
Determining where to draw the line between PFAS and highly fluo-
rinated non-PFAS compounds remains an ongoing challenge. Buck
et al. (2011) limited the scope of PFAS to aliphatic substances that
contain at least one CnF2n+1 moiety. The OECD (2018) expanded
the definition to include substances with the CnF2n moiety, and are
currently considering further revisions to the definition.

Since the late 1940s, PFAS have been used in a wide range of
industrial and consumer product applications as oil, grease, soil,
and water repellents and as surfactants (OECD 2013; Cousins
et al. 2019a). Applications span many sectors of the economy,
including aerospace, apparel, automotive, building and construc-
tion, chemicals and pharmaceuticals, electronics and semiconduc-
tors, energy, oil and gas exploration, first responder safety, and
health care (American Chemistry Council 2021).

In 2015, the Swedish Chemicals Agency (KEMI) identified
over 3,000 PFAS on the global market (KEMI 2015). A more
recent study identified approximately 4,700 Chemical Abstract
Services (CAS) Registry Numbers associated with individual

PFAS or PFAS mixtures (OECD 2018). In 2019, the U.S. EPA
assembled a master list of 6,330 PFAS that combines information
from several existing lists into one (U.S. EPA 2020b). The total
number of PFAS may be even larger, given that some PFAS class
members lack CAS numbers and many are not intentionally man-
ufactured but are metabolites or degradants of other PFAS.

The widespread use, large number, and diverse chemical struc-
tures of PFAS pose challenges to any sufficiently protective regu-
lation, emissions reduction, and remediation at contaminated sites.
Specific members of the PFAS class have been regulated by sev-
eral authoritative bodies. For instance, perfluorooctane sulfonic
acid (PFOS) and its salts, and perfluorooctane sulfonil fluoride are
listed as persistent organic pollutants (POPs) in Annex B of the
Stockholm Convention, whereas perfluorooctanoic acid (PFOA),
its salts, and related compounds are listed in Annex A (UNEP
2020). Perfluorohexane sulfonic acid (PFHxS), its salts, and
related compounds are currently under review for listing (POPRC
2020). Several PFAS are included in the European Chemicals
Agency’s (ECHA) Registration, Evaluation, Authorisation and
Restriction of Chemicals (REACH) Candidate List of Substances
of Very High Concern (SVHC) (ECHA 2020). From 2006 to
2015, the U.S. EPA worked with eight major chemical manufac-
turers to voluntarily phase out production and use of so-called
long-chain PFAS and their precursors (U.S. EPA 2020c) and set a
nonenforceable lifetime health advisory level for PFOA and
PFOS, individually or combined, of 70 ppt in drinking water (U.S.
EPA 2020a). Several U.S. states have also set their own drinking
water guideline levels for PFOA and PFOS (Cordner et al. 2019).

The approach of regulating only individual PFAS or a limited
subset of PFAS has led to the replacement of those PFAS with
other members of the class that have less well-characterized haz-
ard profiles. These alternatives may even be worse, in some
respects, than the PFAS being replaced, thus constituting a “re-
grettable substitution” (Scheringer et al. 2014; Blum et al. 2015;
Brendel et al. 2018). For instance, since the voluntary phaseout
of the longer-chain PFAS in some regions, manufacturers have
shifted to PFAS with six or fewer carbons, such as perfluorohexa-
noic acid (PFHxA) and other shorter-chain PFAS chemistries
(OECD 2013; Brendel et al. 2018), which are less studied but
have also been documented to display multiple hazard traits
(Danish Environmental Protection Agency 2015; Gomis et al.
2018; Brendel et al. 2018; Rice et al. 2020).

Address correspondence to Simona Andreea Bălan, 700 Heinz Ave.,
Berkeley, CA 94710 USA. Email: simona.balan@dtsc.ca.gov
The authors declare they have no actual or potential competing financial

interests.
Received 12 May 2020; Revised 14 December 2020; Accepted 13 January

2021; Published 17 February 2021.
Note to readers with disabilities: EHP strives to ensure that all journal

content is accessible to all readers. However, some figures and Supplemental
Material published in EHP articles may not conform to 508 standards due to
the complexity of the information being presented. If you need assistance
accessing journal content, please contact ehponline@niehs.nih.gov. Our staff
will work with you to assess and meet your accessibility needs within 3
working days.

Environmental Health Perspectives 025001-1 129(2) February 2021

A Section 508–conformant HTML version of this article
is available at https://doi.org/10.1289/EHP7431.Commentary

https://doi.org/10.1289/EHP7431
mailto:simona.balan@dtsc.ca.gov
http://ehp.niehs.nih.gov/accessibility/
mailto:ehponline@niehs.nih.gov
https://doi.org/10.1289/EHP7431


Because all PFAS show high persistence (P) or degrade to other
classmembers that are highly persistent, several recent papers argue
that regulators should take a “P-sufficient” approach and regulate all
PFAS as a class (Cousins et al. 2019b, 2020a). However, the authors
point out that there is no legal precedent in any jurisdiction for this
approach (Cousins et al. 2020a). In this commentary, we present the
first example of a regulatory agency using the P-sufficient approach
as the rationale for regulating PFAS as a chemical class, under the
Safer Consumer Products (SCP) framework adopted by the State of
California’sDepartment of Toxic Substances Control (DTSC).

The Safer Consumer Products Regulations
California’s 2008 SCP law directed the DTSC to “establish a pro-
cess by which chemicals of concern in products, and their poten-
tial alternatives, are evaluated to determine how best to limit
exposure or to reduce the level of hazard posed by a Chemical of
Concern” (Feuer 2008). The DTSC adopted this process in
Article 3 of the SCP regulations (DTSC 2013). The SCP regula-
tory framework authorizes the DTSC to designate specific con-
sumer products (excluding pesticides, food, and pharmaceuticals)
that contain one or more specific Candidate Chemicals as
“Priority Products.” Any chemical that appears on one or more of
23 established authoritative lists referenced in the DTSC’s frame-
work regulations is a Candidate Chemical under this regulatory
framework.

Once the DTSC designates a Priority Product, responsible enti-
ties (typically the product manufacturers) must either conduct an
Alternatives Analysis, remove the Chemical(s) of Concern, or
withdraw the product from the California market. In the
Alternatives Analysis, each manufacturer identifies one or more
potential alternatives to the Chemical of Concern and compares
their life cycle impacts to determine whether the alternative is
safer. If the DTSC determines that the Alternatives Analysis is de-
ficient in terms of the options it considers, the quality of its
research, or its characterization of the tradeoffs between the
Priority Product and the alternative or alternatives under considera-
tion, the DTSC can issue a notice of deficiency requesting addi-
tional information. If a potentially safer alternative proposed by a
manufacturer lacks adequate data, the DTSC can issue a preregula-
tory response requiring the manufacturer to generate new data to
address the data gaps. The DTSC issues a Regulatory Response
based on the findings of the Alternatives Analysis. The goal of the
Regulatory Response is to minimize the adverse impacts identified
for the Priority Product using one or more of the following
approaches: restrictions or prohibitions on the sale of the product,
product labeling on safe handling procedures to prevent exposure,
engineering or administrative controls to reduce exposure, end-of-
life product management to reduce environmental releases, and
investment in green chemistry and engineering to develop safer
alternatives (DTSC 2013).

Identifying Priority Products does not require a formal risk
assessment nor setting minimum threshold values. It only requires
a finding that exposure to a Chemical of Concern in the product has
the potential to “contribute to or cause significant or widespread
adverse impacts” to human health or the environment (DTSC
2013). Thus, we believe the SCP regulations enable the DTSC to
take a precautionary approach to protecting California’s most vul-
nerable human populations, as well as its threatened and endan-
gered species, sensitive habitats, and impaired environments.

PFAS initially rose to the attention of the DTSC staff due to
their endocrine disruption potential (White et al. 2011; C8 Science
Panel 2012b) and well-established, unequivocal environmental
and biological persistence (OECD 2013). The DTSC’s Candidate
Chemicals list contains the entire class of PFAS as defined on one
of the 23 constituent authoritative lists, namely, the Biomonitoring

California Priority Chemicals list. In 2015, Biomonitoring
California designated all PFAS, as defined by Buck et al. (2011), as
Priority Chemicals (Biomonitoring California 2015, 2019). This
PFAS class definition includes all fluorinated aliphatic substances
that contain the moiety CnF2n+1. Between 2016 and 2019, we
refined our approach to regulating PFAS as a class in consumer
products by researching the publicly available literature, engaging
with our stakeholders, and submitting our findings to an external
scientific peer review process mandated by California law. The
resulting technical position described here may be helpful to other
regulatory agencies in comprehensively addressing potential
PFAS impacts.

Discussion

Why Regulating Individual PFAS is Ineffective
Other authors have also recently made the case for managing
PFAS as a chemical class (Cousins et al. 2020a; Kwiatkowski et al.
2020). To understand why this makes sense, it is important to con-
sider that virtually all the thousands of PFAS, as defined by Buck
et al. (2011), can be roughly subdivided into four interrelated cate-
gories: perfluoroalkyl acids (PFAAs), PFAAprecursors, perfluoro-
polyethers (PFPEs), and fluoropolymers (Buck et al. 2011; Wang
et al. 2017). PFAAs are the most studied PFAS subgroup. They are
recalcitrant to degradation and extremely persistent in the environ-
ment (Bentel et al. 2019). Examples of PFAAs include perfluor-
oalkyl carboxylic acids (PFCAs) such as PFOA, perfluoroalkyl
sulfonic acids (PFSAs) such as PFOS, perfluoroalkyl sulfinic acids
(PFSiAs), perfluoroalkyl phosphonic acids (PFPAs), perfluor-
oalkyl phosphinic acids (PFPiAs), perfluoroether carboxylic acids
(PFECAs) such as GenX, and perfluoroether sulfonic acids
(PFESAs) such as 4,8-dioxa-3H-perfluorononanoate (ADONA).
PFAAs and their precursors are further subdivided according to
their chain length, which is viewed as a proxy for their bioaccumu-
lation potential. By convention, the longer-chain PFSAs are those
with six or more perfluorinated carbons; longer-chain PFCAs,
PFPAs, and PFPiAs are those with seven or more perfluorinated
carbons (Buck et al. 2011). The definition of longer- vs. shorter-
chain PFAS is less clear for perfluoroethers.

The majority (∼ 85%) of PFAS are PFAA precursors, that is,
they can degrade or metabolize into PFAAs in the environment or
in living organisms (D’eon and Mabury 2007; Butt et al. 2014;
OECD 2018). Some of the intermediate metabolites of PFAA pre-
cursors may be more toxic than the final PFAA degradation prod-
ucts (Rand and Mabury 2012a, 2012b, 2013, 2014, 2017; Rice
et al. 2020). In particular, most PFAS currently used in consumer
products are side-chain fluorinated polymers, in which the fluori-
nated side-chains are attached to a polymeric backbone and can
cleave off, leading to PFCA terminal degradation products
(Washington et al. 2015, 2019). U.S. EPA scientists have estimated
environmental half-lives for these polymers of between 9 and 60 y
(Washington et al. 2019). Thus, the side-chain fluorinated poly-
mers found in discarded consumer products in landfills and other
waste stocks may continue releasing PFAAs and intermediate deg-
radation products to the environment for decades, or even centuries
(Lang et al. 2017; Li et al. 2017;Washington et al. 2019).

PFPEs are fluorinated polymers with ether linkages (Wang
et al. 2020). They are less likely to degrade to PFAAs, except
perhaps during combustion (Huber et al. 2009; Wang et al.
2020). Fluoropolymers are characterized by large molecular sizes
and do not degrade to PFAAs under typical environmental condi-
tions, although they have been observed to release PFCAs,
including PFOA, when heated to temperatures between 180°C
and 800°C (Schlummer et al. 2015; Feng et al. 2015). PFAAs are
used in the manufacture of fluoropolymers and can occur as
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impurities in the final product. In fact, fluoropolymer manufactur-
ing is the biggest contributor to historical PFCA emissions,
accounting for an estimated 55–83% of all emissions between
1951 and 2002 (Wang et al. 2014a).

Although PFAAs constitute only approximately 1% of PFAS,
we find that the hazard traits of PFAAs are relevant to the entire
class because they are the terminal degradation, metabolism, or
combustion products, manufacturing aids, feedstocks, or impur-
ities of nearly all other PFAS class members (OECD 2018;
Kwiatkowski et al. 2020). It is, therefore, our opinion that envi-
ronmental releases of and exposures to PFAAs cannot be regu-
lated without regulating the manufacture, use, and end-of-life
fate of the other PFAS.

Criteria for Regulating PFAS under the California Code of
Regulations
The California Green Chemistry Hazard Traits Regulations
define a series of hazard traits, which are subdivided into toxico-
logical, environmental, exposure potential, and physical hazard
traits (OEHHA 2012b), discussed in more detail below. These
hazard traits are not weighted. Reliable evidence for any one of
these hazard traits can suffice to indicate that a chemical’s poten-
tial adverse impacts warrant regulatory action.

Exposure potential hazard traits. At the DTSC, we have
found that PFAS display one or more of the following exposure
potential hazard traits listed in the California Code of
Regulations: environmental persistence, mobility in environmen-
tal media, bioaccumulation, lactational or transplacental transfer,
and global warming potential. Environmental persistence is the
most widely recognized hazard trait of the class of PFAS. The car-
bon–fluorine bond shared by all members of the class is one of the
strongest in organic chemistry, and the strongest single bond to car-
bon (Kiplinger et al. 1994). Thismakes PFAAs, the terminal degra-
dation products of most PFAS, extremely recalcitrant in the
environment (D’eon and Mabury 2011; Buck et al. 2011;
Washington et al. 2015; Krafft and Riess 2015)—so much so that
they have been called the “forever chemicals” (Pelch et al. 2019).
Persistence is arguably “the most important single criterion affect-
ing chemical exposure and risk via the environment” (Mackay et al.
2014). Some have even proposed that high persistence alone
should be a sufficient basis for chemical regulation because if
adverse impacts are identified, contamination cannot be reversed at
scale within a reasonable time frame (Cousins et al. 2019b).
According to the Statement of Reasons for the California Green
Chemistry Hazard Traits Regulations, “Persistence of a chemical
in the environment promotes sustained exposure and contributes to
accumulation in the environment. Because persistence is an inher-
ent property of a chemical in the environment that results in
increased exposure to the chemical and consequently potential for
health risks, it can appropriately be identified as a hazard trait.
Legacy chemicals such as dichlorodiphenyltrichloroethane (DDT)
and polychlorinated biphenyls (PCBs) remain public health con-
cerns decades after their production was banned because of their
ability to persist in the environment” (OEHHA2012a).

PFAAs and some of their precursors are known to bioaccu-
mulate in animals or plants. Unlike other persistent organic pollu-
tants, PFAAs are proteinophilic and tend to accumulate not in fat
but in protein-rich tissues such as blood (Jones et al. 2003; Chen
and Guo 2009; Hebert and MacManus-Spencer 2010; Greaves
et al. 2012; Hurley et al. 2018), liver (Greaves et al. 2012; Pérez
et al. 2013; Gebbink et al. 2016), brain (Greaves et al. 2012;
Pérez et al. 2013), kidney and lung (Pérez et al. 2013), and mus-
cle (Greaves et al. 2012). Human serum elimination half-lives of
longer-chain PFAAs range from years (Bartell et al. 2010; Olsen
et al. 2007a; Seals et al. 2011) to decades (Shi et al. 2016). For

shorter-chain PFAAs, human serum elimination half-lives are on
the order of days (Chang et al. 2008; Nilsson et al. 2010; Olsen
et al. 2007a). However, recent studies have indicated that some
of the intermediate short-chain PFAS metabolites, such as 5:3 flu-
orotelomer carboxylic acid (FTCA), may biopersist and bioaccu-
mulate (Kabadi et al. 2018, 2020). Shorter-chain PFAAs also
tend to accumulate in plants (Blaine et al. 2013, 2014; Gobelius
et al. 2017; Lechner and Knapp 2011; Scher et al. 2018; Stahl
et al. 2009; Yoo et al. 2011), allowing them to enter terrestrial
and aquatic food chains.

PFAAs and several of their nonpolymeric precursors have
high mobility in environmental media and can be transported
long distances in the atmosphere or hydrosphere (Wang et al.
2014b; Xie et al. 2015; Dreyer et al. 2015). Shorter-chain PFAS
are known to be more mobile and difficult to remove from water
(Brendel et al. 2018; Ateia et al. 2019), readily contaminating
groundwater (McLachlan et al. 2019) and escaping from waste
stocks such as landfills and dumps (L Li et al. 2017; F Li et al.
2020). Because they tend to be more volatile, they are more likely
to be released from consumer products.

Several PFAS are known to undergo transplacental (Midasch
et al. 2007; Zhang et al. 2013; Yang et al. 2016; F Chen et al.
2017; Zhao et al. 2017; Mamsen et al. 2019; Eryasa et al. 2019;
Cai et al. 2020) and lactational (Kärrman et al. 2007; Llorca et al.
2010; Mogensen et al. 2015; Mondal et al. 2014; Tao et al.
2008b; Kim et al. 2014; Fromme et al. 2010; Kang et al. 2016;
Nyberg et al. 2018; Lee et al. 2018) transfer in humans. Up to
30.3% of the PFAS found to undergo transplacental transfer using
nontarget screening were novel PFAS whose impacts on the
developing fetus are yet unknown (Y Li et al. 2020).

Toxicological and environmental hazard traits. PFAAs,
which are relevant to the entire class as manufacturing aids,
degradants, or impurities, collectively also display several toxico-
logical and environmental hazard traits. Potential adverse human
health effects and risk factors from longer-chain PFAA exposure
include increased serum cholesterol (Skuladottir et al. 2015;
Winquist and Steenland 2014), thyroid disease (Winquist and
Steenland 2014), immune dysregulation (Grandjean and Clapp
2014; Grandjean et al. 2017a, 2017b), pregnancy-induced hyper-
tension (C8 Science Panel 2011), and kidney and testicular can-
cers (C8 Science Panel 2012a). Other studies have found positive
correlations between long-chain PFAA exposure and low birth
weight in humans (Malits et al. 2018), as well as suppressed
immune system response, dyslipidemia, impaired kidney func-
tion, and delayed first occurrence of menstruation (Rappazzo et al.
2017).

Due to their shorter observed biological half-lives, shorter-
chain PFAS have been assumed to be less toxic compared with
the longer-chain PFAS (DeWitt 2015; Stahl et al. 2011; Wolf
et al. 2008). However, more and more studies are questioning
this assumption. A toxicokinetic study found that the potency of
shorter-chain PFAAs to induce increased liver weight is similar
to that of the longer-chain PFOA, and even greater for the
PFECA GenX (Gomis et al. 2018). Limited animal data on GenX
and related perfluorinated ethers indicate potential associations
with cancer, body weight gain, changes to the immune system
and cholesterol levels, increased kidney and liver weights, and
liver cell changes (Caverly Rae et al. 2015; Beekman et al.
2016). Several toxicokinetic studies and receptor binding assays
report biological activity from exposure to the shorter-chain
PFBA and PFBS (Wolf et al. 2008; Danish Environmental
Protection Agency 2015). Studies on zebrafish and rodents have
linked PFBA with reproductive and developmental toxicity (Das
et al. 2008; Hagenaars et al. 2011) and ocular toxicity (Butenhoff
et al. 2012), PFBS with developmental toxicity (Hagenaars et al.
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2011) and hematotoxicity (Lieder et al. 2009), and PFHxA with
respiratory toxicity (Loveless et al. 2009). Neurodevelopmental
toxicity has also been demonstrated in vitro for PFBS (Slotkin
et al. 2008).

Less is known about the toxicity of most PFAA precursors.
Some studies suggest that fluorotelomer-based PFAA precursors,
including their intermediate degradation products, are more toxic
than the final PFAA metabolites (Phillips et al. 2007; Rand et al.
2014; Rice et al. 2020). Hazard traits reported for these precur-
sors include endocrine toxicity (Ishibashi et al. 2008; Rosenmai
et al. 2016; Weiss et al. 2009; Ladics et al. 2008; Winkens et al.
2017; Rice et al. 2020), developmental toxicity (Shi et al. 2017b;
Rice et al. 2020), and hepatotoxicity and nephrotoxicity (Ladics
et al. 2008; Rice et al. 2020).

Available data also link PFAAs and some of their precursors
with several of the environmental hazard traits identified in
California’s Green Chemistry Hazard Traits Regulations: phyto-
toxicity (Latała et al. 2009), wildlife developmental impairment
(Hagenaars et al. 2011; Ulhaq et al. 2013; Shi et al. 2017a), wild-
life reproductive impairment (Liu et al. 2009), and wildlife sur-
vival impairment (O’Connor et al. 2014; Klaunig et al. 2015;
Eggers Pedersen et al. 2015; Shi et al. 2017a).

Widespread human and ecological exposures. In addition to
the hazard traits discussed above, the SCP regulations consider
the potential for exposures to the Candidate Chemical in a prod-
uct and the aggregate effects of exposures to the Candidate
Chemical from multiple exposure sources and media (DTSC
2013).

PFAAs and some of their precursors are widespread in the
environment, including in air (Kim and Kannan 2007; Muir et al.
2019; Wang et al. 2019), dust (Haug et al. 2011; Eriksson and
Kärrman 2015; Yao et al. 2018; Shin et al. 2020), wastewater
treatment plant effluent (Hamid and Li 2016; Wang et al. 2016;
Houtz et al. 2016; H Chen et al. 2017), biosolids (Letcher et al.
2020; Kim Lazcano et al. 2020), soil (Rankin et al. 2016;
Dalahmeh et al. 2018; Muir et al. 2019; Washington et al. 2019),
snow (Kim and Kannan 2007; Kirchgeorg et al. 2016), inland
and ocean waters (Prevedouros et al. 2006; Zhao et al. 2012;
Wang et al. 2016; Muir et al. 2019), drinking water (Gellrich et al.
2013; Wang et al. 2016; Boone et al. 2019), and human foods
(Pérez et al. 2014; Gebbink et al. 2015; Domingo and Nadal
2017; Christensen et al. 2017; EFSA CONTAM Panel et al.
2018). As a result, human (Cariou et al. 2015; Calafat et al. 2007;
Chang et al. 2014; Fraser et al. 2013; Kang et al. 2016; Monroy
et al. 2008; OECD 2013; Olsen et al. 2007b; Tao et al. 2008a,
2008b) and ecological (Giesy and Kannan 2001; Liu et al. 2011;
OECD 2013) exposures to PFAS mixtures are widely docu-
mented. Shorter-chain PFAAs are often not detectable in human
serum and plasma but can be found at concentrations comparable
to or higher than those of longer-chain PFAS in human whole
blood (Poothong et al. 2017), hair (Alves et al. 2015; Ruan et al.
2019; Martín et al. 2019), urine (Hartmann et al. 2017; Kim et al.
2014; Pérez et al. 2012), and certain organs, including the kidney,
lung, liver, and brain (Pérez et al. 2013). Given that PFAS are
highly persistent and capable of long-range transport, we expect
that environmental contamination and exposures will continue
for as long as PFAS are manufactured or used anywhere in the
world.

Thus, human and ecological receptors are exposed to mixtures
of PFAS whose environmental fate and hazard traits are inter-
linked. Despite recent analytical advancements, most of the
PFAS observed in the environment, wildlife, and human tissues
remain unidentified (Xiao 2017). Only a small fraction (some-
times <5%) of the organofluorine present in these media have
been targeted for analysis. Until analytical methods are

developed and validated for more members of the class, the full
extent of PFAS contamination, despite extensive research, will
remain poorly understood.

Regulatory Implications
Based on the currently available science, we have concluded that
it is both ineffective and impractical to regulate this complex
class of chemicals with a piecemeal approach and have, therefore,
initiated regulatory action to list certain consumer products con-
taining any PFAS as Priority Products under the SCP regulations.
The available information demonstrates that all PFAS or their
degradation, reaction, or metabolism products have at least one
hazard trait of concern to the State of California: environmental
persistence. As others have argued, high persistence alone can be
a sufficient criterion for regulatory action (Cousins et al. 2019b,
2020b). In the case of PFAS, we believe that all members of the
class have a potential for significant and widespread adverse
impacts due to their extremely high environmental persistence,
coupled with growing evidence for human and ecological health
hazards for the impurities, metabolites, and degradation products
of the subset commonly used in consumer products. The concerns
identified in this commentary reflect our best understanding of
the current PFAS in production and use. However, significant
data gaps remain, and we cannot exclude the possibility that new
PFAS may be developed in the future following green chemistry
principles.

Because individual PFAS never occur in isolation, we believe
they cannot be effectively regulated in isolation. The potential for
widespread exposures will remain for as long as PFAS continue
to be used and concerns over their fate and transport remain inad-
equately addressed. However, although virtually all PFAS stud-
ied show at least suggestive evidence of toxicity, the observed
effects are variable. This means that PFAS cannot be regulated as
a class based on a common mode of action or toxicity. At the
DTSC, we were able to take a class approach to regulating PFAS
because a) persistence is codified as a hazard trait in the
California code of regulations; b) the entire class is on the
DTSC’s list of Candidate Chemicals, after being designated as
priority chemicals for biomonitoring in California; and c) the
SCP regulatory framework is based on an inherently precaution-
ary approach, to protect the most vulnerable human and ecologi-
cal (sub)populations.

Thus, the California Green Chemistry Hazard Traits and SCP
regulations (OEHHA 2012b; DTSC 2013) offer a more compre-
hensive, precautionary approach to assessing potential adverse
impacts of PFAS and can serve as a model for other regulatory
agencies aiming to address potential PFAS impacts comprehen-
sively. Taking a class approach to regulating PFAS in consumer
products could also encourage innovation in developing safer
alternatives and reducing the risk of regrettable substitutions.
Indeed, under California’s regulatory framework, our identifica-
tion of the entire PFAS class as a Chemical of Concern will com-
pel manufacturers to identify, and rigorously evaluate, the
relative safety of non-PFAS alternatives throughout a product’s
life cycle.

This precautionary regulatory approach may be applicable to
other chemical classes in consumer products where class mem-
bers share life cycle fates or hazard traits, limited toxicological
and exposure data are publicly available, and regrettable substitu-
tions are likely. For example, we are also proposing to regulate
nonylphenol ethoxylates in laundry detergents as a class (DTSC
2018). We also recommend consideration of this approach for
regulating nontraditional complex classes of compounds that are
of concern but lack a common mode of action or toxicity, such as
microplastics.
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